
Ethereum Classic Technical Reference
Release 0.1

Christian Seberino

May 23, 2020

Contents

I Introduction 2

II World Computer (Virtual Machine) 3

1 Accounts 3
1.1 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Ether & Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Smart Contracts 7
2.1 Smart Contract Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multisig Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Clients 12
3.1 Web 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III World Database (Blockchain) 13

4 Transactions 13

5 Blocks 14
5.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Logs 15
6.1 Logging Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Mining 16
7.1 Proof Of Work Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Ethash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Uncle Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.4 Mining Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5 Mining Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



IV Appendices 19

8 Recursive Length Prefix 19

9 Root Hashes 22

10 Bloom Filters 30

11 Digital Signatures 31

12 How Nodes Find Each Other 34

13 Code Is Law Principle 37

14 A Crypto-Decentralist Manifesto By Bit Novosti 37

15 The Ethereum Classic Declaration Of Independence 38

16 Glossary 40

(The ETC Classic Technical Reference is still a work in progress. Feel free to send suggestions, feedback and
corrections to me, Chris Seberino, at cs@etcplanet.org or through the Github pull request mechanism.)

Part I

Introduction
Ethereum Classic (ETC) is the most exciting technology today. It promises to upend governments, the
financial industry, supply chain management and much more. The marriage of ETC with the Internet of
Things is a game changer. Some think ETC may replace the World Wide Web!

ETC is composed of the world computer and database. The ETC world computer is also referred to as
the ETC virtual machine. The ETC world database is also referred to as the ETC blockchain. These two

2

mailto:cs@etcplanet.org


components have several noteworthy properties:

censorship resistance It is virtually impossible to stop the execution of code or to deny access to infor-
mation.

security Security is built in with cryptography.

pseudonymity Users are anonymous except for pseudonyms.

openness All the software is open source, and, all the activity for all time is available for inspection.

reliability It is always available and virtually impossible to shut down.

trustlessness There is no need to rely on any single person or entity.

All of these properties, except trustlessness, are possible without blockchain technology. For example,
consider a web server securely configured with several identical backup servers geographically distributed.
Suppose these web servers were only accessible using onion routing. This setup can provide significant
censorship resistance, security, pseudonymity, openness and reliability. Note however how much effort is
required. With ETC, these properties are present by default!

Because ETC is trustless, no one has special powers. Therefore, it is possible to implement extremely
sensitive applications on ETC such as financial and identity services.

Final note, everyone effectively runs their applications on the same single computer, the ETC world computer.
However, this virtual computer is actually implemented by a worldwide network of computers. All the
computers in the network run all applications in parallel. This extreme redundancy is a main reason the
ETC world computer has its amazing properties.

Part II

World Computer (Virtual Machine)
The world computer is a single virtual machine implemented by a worldwide network of computers. Programs
on the world computer are referred to as smart contracts. Because the world computer is Turing complete,
smart contract can be arbitrarily complex. Users interact with the world computer through clients using
accounts. In fact, all actions on the world computer are initiated by transactions sent from users.

1 Accounts

Accounts are associated with users and smart contracts. All accounts contain the following five components:

address These are sets of numbers used to identify accounts.

balance All funds are associated with accounts. This is a balance of classic ether, also know as ether or
ETC.

code (smart contract) All smart contracts are associated with accounts. This component is an empty
string for user accounts.

storage All smart contracts have associated memory. This component is an empty string for user accounts.

nonce Nonces are counters. For user accounts, these equal the number of associated transactions. For
smart contract accounts, these equal the number of associated smart contracts created.

All components of all accounts together comprise the state of the world computer.

3

https://en.wikipedia.org/wiki/Onion_routing
https://en.wikipedia.org/wiki/Turing_completeness


1.1 Addresses

All accounts are identified by addresses which are derived from secret random numbers unique to each
account. These secret random numbers are referred to as private keys. Private keys must be kept private
because they are used to digitally sign transactions from accounts. These transactions can transfer funds,
create smart contracts, and, execute smart contracts. Strictly speaking, private key numbers must be between
1 and

115792089237316195423570985008687907852837564279074904382605163141518161494336

inclusive. This requirement is necessary for their use in ETC digital signatures. Some may be concerned
that two users might unintentionally select the same private key. The odds of that happening are vanishingly
small. In fact, the number of possible private keys is approximately equal to the number of atoms in the
entire universe!

All private keys are associated 64 byte numbers derived from them which are referred to as public keys. The
calculation of public keys involves an odd type of arithmetic with respect to pairs of numbers. Here is a
Python script that calculates public keys from private keys:

#!/usr/bin/env python3

"""
Calculates ETC public keys from ETC private keys.

Usage: etc_pub_key <private key>
"""

import random
import sys

A = 0
N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
P = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
GX = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
GY = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
HEXADECIMAL = 16
NUM_FORMAT = "{{:0{}x}}".format(len(hex(P)[2:]))

def inverse(number):
"""
Inverts a number.
"""

inverse = 1
power = number
for e in bin(P - 2)[2:][::-1]:

if int(e):
inverse = (inverse * power) % P

power = (power ** 2) % P

return inverse

def add(pair_1, pair_2):
"""

(continues on next page)

4



(continued from previous page)

Adds two pairs.
"""

if pair_1 == "identity":
sum_ = pair_2

elif pair_2 == "identity":
sum_ = pair_1

else:
if pair_1 == pair_2:

numer = 3 * pair_1[0] ** 2 + A
lambda_ = (numer * inverse(2 * pair_1[1])) % P

else:
numer = pair_2[1] - pair_1[1]
denom = pair_2[0] - pair_1[0]
lambda_ = (numer * inverse(denom)) % P

x = (lambda_ ** 2 - pair_1[0] - pair_2[0]) % P
y = (lambda_ * (pair_1[0] - x) - pair_1[1]) % P
sum_ = (x, y)

return sum_

def multiply(number, pair):
"""
Multiplies a pair by a number.
"""

product = "identity"
power = pair[:]
for e in bin(number)[2:][::-1]:

if int(e):
product = add(power, product)

power = add(power, power)

return product

def convert(pair):
"""
Converts pairs to numbers by concatenating the elements.
"""

return int("".join([NUM_FORMAT.format(e) for e in pair]), HEXADECIMAL)

print(convert(multiply(int(sys.argv[1]), (GX, GY))))

The reason for this convoluted process is so that private keys cannot be derived from public keys. This
allows public keys to be safely shared with anyone. If you want to learn more, investigate elliptic curve
cryptography. The reason for this name is that historically it followed from calculations of the arc lengths
of ellipses. Together, public and private keys are often referred to as wallets.

Addresses are formed from the first 20 bytes of the Keccak 256 hashes of public keys. These are more often
used to identify accounts rather than public keys. Interestingly, public keys cannot be determined solely
from addresses. Here is a Python script that calculates addresses from public keys. It requires the PySHA3
package. Addresses are typically expressed in hexadecimal notation and that convention is followed in this

5



script:

#!/usr/bin/env python3

"""
Calculates ETC addresses from ETC public keys.

Usage: etc_address <public key>
"""

import sha3
import binascii
import sys

N_ADDRESS_BYTES = 20
N_PUB_KEY_BYTES = 64

public_key = (int(sys.argv[1])).to_bytes(N_PUB_KEY_BYTES, byteorder = "big")
print(sha3.keccak_256(public_key).hexdigest()[-2 * N_ADDRESS_BYTES:])

Here is a slightly edited session, on a Linux computer, that calculates a public key and address with regards to
a random private key. It uses the aforementioned scripts saved in files called etc_pub_key and etc_address
respectively:

% PRIVATE_KEY=
↪→"92788259381212812445638172234843282167646237087212249687358593145563035518424"

% PUBLIC_KEY=`etc_pub_key $PRIVATE_KEY`

% ADDRESS=`etc_address $PUBLIC_KEY`

% echo $PRIVATE_KEY
92788259381212812445638172234843282167646237087212249687358593145563035518424

% echo $PUBLIC_KEY
9808854183897174607002157792089896992612613490844656534725423301978228163634425857099752732031947328803605451685330420628756154476771607661633738743568351

% echo $ADDRESS
89b44e4d3c81ede05d0f5de8d1a68f754d73d997

1.2 Ether & Gas

To create and utilize smart contracts, user submit transactions. Transactions must pay for these services in
classic ether. Classic ether can be obtained by purchasing it or by mining. The smallest denomination of
classic ether used in the ETC system is 1 wei. One billion billion (1018) weis equal a single classic ether.
Due to the mining reward formula, the total supply of classic ether will never exceed 210.6 million tokens.

The cost of creating and executing all smart contracts is measured in a made up unit referred to as gas
units. Users submit transactions that pay for gas units in terms of classic ether. Notice that while the price
of classic ether fluctuates, the price of various services in terms of gas units does not. In transactions, user
specify how much classic ether they are willing to pay per gas unit. For security reasons, the amount of gas
that can be purchased and used by blocks is limited.

6



2 Smart Contracts

Smart contracts are autonomous software applications that manage agreements. Agreements may be trivial
or extremely complex. An alternative equivalent term is software agents. Consider vending machines. They
specify and enforce agreements to release various items for various payments. They do not require humans
to operate. Vending machine are therefore examples of smart contracts. They notion of smart contracts was
conceived by Nick Szabo and predates blockchain technology:

“A smart contract is a computerized transaction protocol that executes the terms of a contract.
The general objectives of smart contract design are to satisfy common contractual conditions
(such as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both
malicious and accidental, and minimize the need for trusted intermediaries. Related economic
goals include lowering fraud loss, arbitration and enforcement costs, and other transaction costs.”

– Nick Szabo, 1994

ETC makes an excellent smart contract platform. ETC programs autonomously manage countless agree-
ments in a secure, reliable and trustless manner. For this reason ETC programs are referred to as smart
contracts.

ETC smart contracts can read and write to their own storage as well as invoking other smart contracts. In
this way, smart contracts can work together to provide increasingly sophisticated services.

Some, like Nick Szabo, envision smart contracts streamlining voluntary contractual agreements and dis-
rupting the legal profession. Clearly software is less prone to misunderstanding and ambiguity than spoken
languages! Others see a future where complex smart contracts replace entire corporations. Such programs
are referred to as distributed autonomous enterprises (DAEs). For example, imagine a smart contract im-
plementing a ride sharing service. The smart contract could bring riders and drivers together in an efficient
flexible manner. Note that ETC smart contracts can not only make existing agreements more efficient, but,
they can also make possible contracts which previously were not possible due to overhead costs. For example,
in addition to assisting multinational corporations, ETC can help teenagers running a small business and
people providing microservices to third world countries.

Because the ETC world computer is implemented by a network of computers, ETC smart contracts are also
referred to as decentralized applications, or dapps for short.

2.1 Smart Contract Languages

Typically smart contracts are written in high level languages. The corresponding source code is compiled to
the equivalent ETC virtual machine instructions. The most popular high level smart contract language is
Solidity. There are also other possible choices such as Vyper. Solidity is a Javascript like language designed
to be easily adopted by new developers. Here is the Solidity source code for a simple program. All it does is
maintain a counter variable. The counter can be incremented by anyone. Only the user account that created
the smart contract can reset the counter value:

pragma solidity ^0.4.18;

/*
This smart contract maintains a counter which anyone can increment but only
the author can set to an arbitrary value.
*/

contract Counter {
uint counter;
address author;

(continues on next page)

7



(continued from previous page)

function Counter() public {
counter = 0;
author = msg.sender;

}

function increment() public {
counter += 1;

}

function set(uint new_value) public {
if (msg.sender == author) {

counter = new_value;
}

}

function get_counter() public constant returns (uint) {
return counter;

}
}

Here is Solidity source code for a more complex program. This one implements a new token:

pragma solidity ^0.4.18;

/*
Implements ChrisCoin which adheres to the Ethereum Token Standard.
*/

contract ChrisCoin {
string name_;
string symbol_;
uint decimals_;
uint total_supply;
mapping(address => uint) balance;
mapping(address => mapping(address => uint)) approved;

event Approve(address indexed managed_add,
address indexed manager_add,
uint approv_amt);

event Transfer(address indexed send_add,
address indexed receiv_add,
uint trans_amt);

function ChrisCoin() public {
/*
Sets the named constants and the initial balance(s).
*/

name_ = "ChrisCoin";
symbol_ = "CHRC";
decimals_ = 18;

(continues on next page)

8



(continued from previous page)

total_supply = 21000000 * 10 ** decimals_;
balance[msg.sender] = total_supply;

}

function name() public constant returns (string) {
/*
Returns the cryptocurrency name.
*/

return name_;
}

function symbol() public constant returns (string) {
/*
Returns the exchange ticker symbol.
*/

return symbol_;
}

function decimals() public constant returns (uint) {
/*
Returns the maximum number of subdivision decimal places.
*/

return decimals_;
}

function balanceOf(address account_add) public constant returns (uint) {
/*
Returns account balances.
*/

return balance[account_add];
}

function allowance(address managed_add,
address manager_add)
public constant returns (uint) {

/*
Returns approved amounts.
*/

return approved[managed_add][manager_add];
}

function approve(address manager_add,
uint approv_amt)
public constant returns (bool) {

/*
Returns approved amounts.
*/

(continues on next page)

9



(continued from previous page)

approved[msg.sender][manager_add] = approv_amt;
Approve(msg.sender, manager_add, approv_amt);

return true;
}

function valid(address send_add,
address receiv_add,
uint trans_amt)
public constant returns (bool) {

/*
Determines the validity of transfers.
*/

bool valid_trans_amt = trans_amt <= total_supply;
bool suff_send_bal = balance[send_add] >= trans_amt;
uint receiv_bal = balance[receiv_add] + trans_amt;
bool valid_receiv_bal = receiv_bal <= total_supply;

return valid_trans_amt && suff_send_bal && valid_receiv_bal;
}

function update_balance(address send_add,
address receiv_add,
uint trans_amt)
private {

/*
Updates balance with regards to tranfers.
*/

balance[send_add] -= trans_amt;
balance[receiv_add] += trans_amt;

}

function update_approved(address send_add, uint trans_amt) private {
/*
Updates approved with regards to tranfers.
*/

approved[send_add][msg.sender] -= trans_amt;
}

function transfer(address receiv_add,
uint trans_amt)
public constant returns (bool) {

/*
Transfers funds between accounts.
*/

bool result = false;
if (valid(msg.sender, receiv_add, trans_amt)) {

(continues on next page)

10



(continued from previous page)

update_balance(msg.sender, receiv_add, trans_amt);
Transfer(msg.sender, receiv_add, trans_amt);
result = true;

}

return result;
}

function transferFrom(address send_add,
address receiv_add,
uint trans_amt)
public constant returns (bool) {

/*
Transfers funds between accounts.
*/

bool result = false;
bool approv_amt = trans_amt <= approved[send_add][msg.sender];
if (valid(send_add, receiv_add, trans_amt) && approv_amt) {

update_balance(send_add, receiv_add, trans_amt);
update_approved(send_add, trans_amt);
Transfer(send_add, receiv_add, trans_amt);
result = true;

}

return result;
}

}

2.2 Multisig Smart Contracts

Multisig smart contracts will likely be the dominant smart contract type in the future. The security and
other benefits are that compelling.

Malware, keyboard loggers and “man in the middle attacks” are just some of the ways passwords can be
stolen. Therefore, many use multifactor authentication to increase security. For example, accessing a website
from a laptop may require a password and approval from a smartphone.

Ethereum Classic (ETC) and other smart contract systems can also benefit from multifactor authentication.
ETC users are associated with accounts. ETC account authentication involves digital signatures. Therefore,
ETC smart contracts requiring multifactor authentication are referred to as multisig smart contracts.

One of the most common types of multisig smart contracts requires digital signatures from any two of three
accounts. Here are some applications where this is useful:

Single Individuals Imagine always requiring a digital signature from a laptop based account and a smart-
phone based account. To protect against the loss of either device, store the information for the third
account in a secured paper wallet.

Online Shopping (Trusted Escrow) When purchasing products and services online, imagine buyers
placing funds in multisig smart contracts. Have buyers and sellers each control an associated ac-
count. Allow an arbiter to control the third associated account. Notice buyers and sellers can together
release funds without the arbiter. In the event of disagreements notice the arbiters can, together with

11



buyers or sellers, release funds to the desired choices. Because the arbiter does not control any funds,
this is referred to as trusted escrow.

Small Businesses Imagine a small business controlling one associated account. Imagine a separate inspec-
tion service company controlling the second associated account. All transactions must be approved by
the inspection service. To protect against any issues with the accounts, store the information for the
third associated account in a secured paper wallet.

Here are two more multisig smart contract types and applications:

Majority Rule Imagine all members of a group controlling separate associated accounts. Imagine requiring
digital signatures from any majority of the accounts. This would implement a majority rule arrange-
ment.

Unanimity Rule Imagine all members of a group controlling separate associated accounts. Imagine requir-
ing digital signatures from all of the accounts. This would implement a unanimity rule arrangement.

There are currently no ETC multisig smart contract standards. However, open source templates are available
- such as from the OpenZeppelin project.

There are several common scenarios where multisig smart contracts are useful and significantly increase
security. Therefore, it is likely they will take over ETC and the world.

3 Clients

To interact with the ETC world computer requires communicating with a computer on the ETC network.
It is relatively easy to set up a computer to become part of the network. This requires the installation of
an implementation of the ETC communication protocols. Possible choices include Geth, Parity and Mantis.
To use ETC, it is not necessary to set up a new computer on the network. Applications can simply request
information from other network computers. Such applications are referred to as light clients. Whether using
a light client or setting up a full network computer, users can communicate with the ETC network using
Web 3.

3.1 Web 3

Web3 refers to a standard set of ETC application programming interfaces using the Javascript Object
Notation Remote Procedue Call (JSON RPC) protocol. Web3 provides a convenient way to interact with
ETC nodes and the ETC system. The name Web3 refers to the most ambitious goal for Ethereum Classic
(ETC) which is to replace the World Wide Web (Web). Blockchain based replacements for the Web are
often referred to as Web 3.0.

The Web was developed by Tim Berners-Lee and first made publicly available in 1991. It is a user friendly
general purpose system based on the Internet. Initially the Web mainly contained simple static content such
as primitive personal home pages. As the Web evolved, greater dynamism and interactivity was possible
such as with social media. This improved Web is often referred to as Web 2.0. The term was popularized
by Tim O’Reilly.

Neither the Internet nor the Web were initially designed to be trustless systems. Components have been
steadily introduced to improve security such as Transport Layer Security (TLS), certificate authorities, and,
Domain Name System Security Extensions (DNSSEC). Unfortunately, many such improvements are only
partially adopted.

Gavin Wood popularized the term Web 3.0 for blockchain based trustless alternatives to the Web. Confus-
ingly, Web 3.0 also sometimes refers to the Semantic Web.

12

https://github.com/ethereumproject/go-ethereum
https://github.com/paritytech/parity
https://github.com/input-output-hk/mantis


Web 3.0 is a peer to peer replacement for the Web. A peer to peer architecture is required to build trustless
systems. Web 3.0 users are pseudonymous. They are only identified by their accounts, unlike the Web,
where addresses can be associated with identities. ETC requires access to additional short and long term
storage systems to replace the Web. The InterPlanetary File System (IPFS) is an example of a compelling
peer to peer storage system that can integrate with ETC.

The Web currently coexists with blockchain systems. Websites access these systems to provide additional
functionality. As ETC and related systems mature, browsers will increasingly just point to these Web
alternatives thus ushering in the era of Web 3.0.

Part III

World Database (Blockchain)
The world database stores requests sent to the world computer. These requests are referred to as transactions.
The transactions are collected into sets referred to as blocks. The blocks form a tree and a single path through
that tree defines the blockchain. The blockchain stores other information in addition to transactions such as
transaction logs. Lastly, process of creating, verifying and adding new blocks to the blockchain is referred to
as mining.

The blockchain distributed database architecture was first introduced to the world in the Bitcoin system.

4 Transactions

Transactions are requests sent to the ETC network from user accounts. Transactions can send funds, create
new smart contracts, or, execute existing smart contracts. Transaction resource requirements are measured
in gas units. Gas is purchased with classic ether. All transactions contain the following six elements:

to (receiving address) Transactions contain receiving account addresses. This component is an empty
string for smart contract creation transactions for which new accounts, with new addresses, will be
created.

init or data (constructor or calling arguments) For smart contract creation transactions, this con-
tains the associated constructors. For smart contract execution transactions, this contains the data
operated on.

value (transfer amount) amount of classic ether, in units of wei, to be transferred to the receiving account

gas price offer of classic ether willing to pay per gas unit

gas limit (maximum gas purchase) maximum number of gas units willing to purchase

nonce originating user account nonces

v, r, s (digital signature) three numbers comprising the digital signature of the transaction with respect
to the private key of the originating account

If applying transactions requires more gas to complete than the maximum gas amount allowed, then all the
effects are reversed except that the user is still charged for the gas utilized.

13



5 Blocks

The ETC blockchain is composed of an array of blocks. Blocks contain three categories of information:
computation, consensus and context. Blocks contain transaction related information (computation), mining
related information (consensus), and, information to properly locate blocks on the blockchain (context). All
components except for two lists form the block headers.

5.1 Computation

Transactions initiate all activity on the world computer. This category contains information related to this
computation. Specifically, these block components consist of the following:

transaction list lists of transactions

transactions root (transaction list root hash) root hashes of transaction lists

gas used (transaction list total gas requirement) gas requirements for all the transactions in the
transaction list

state root (transaction list final state root hash) root hashes of the states after each transaction is
applied

receipts root (transaction log list root hash) root hashes of transaction log lists

logs Bloom (transaction log list Bloom filter) Bloom filters of transaction log lists

It may seem problematic that blocks only contain root hashes of states and transaction logs. Nevertheless,
the full specification of any state or transaction log can always be obtained by reapplying all the transactions
on the blockchain with respect to the initial state.

5.2 Consensus

Mining is the process of creating and validating new blocks. This is referred to as mining because the
participants (miners) are rewarded with newly created ETC. The mining procedure is referred to as the
consensus algorithm as it helps users of ETC agree on an ordered set of transactions. This involves a race
to find certain numbers necessary to create new blocks. These numbers are referred to as proof of work
information because they are “proof” that a certain amount of computational work was done. The block
candidates that lose this race are referred to as the uncle blocks since they are related to the parents or last
blocks added. These block components consist of the following:

extra data (miner extra data) 32 unused bytes added by miners

beneficiary (miner address) addresses with respect to block mining rewards

mix hash (miner validation help) values that help miners validate blocks faster

gas limit (miner gas maximum) maximum possible gas requirements to apply all transactions in blocks

nonce (proof of work information) the number required to add blocks to the blockchain

difficulty (proof of work difficulty) difficulty of finding proof of work information for the block

ommer header list (uncle header list) lists of the headers of the associated uncles

ommers hash (uncle header list root hash) Keccak 256 hashes of uncle header lists

The miner validation help components are necessary because slow block validation risks certain denial of
service attacks. Miners are able to make slight adjustments to the miner gas maxima of the next blocks they
create if desired. Uncles improve security by making attacks require performing more work. The consensus

14



algorithm automatically increases the proof of work difficulty for the next blocks when new blocks are being
added too quickly. Likewise, the proof of work difficulty decreases when new blocks are being added too
slowly.

5.3 Context

Blocks must always located correctly in the blockchain. Here are the blockchain components pertaining to
context.

number (block number) the numbers of blocks that must precede blocks on the blockchain

parent hash (parent header hash) Keccak 256 hash of parent block headers

timestamp (date & time) dates and times that blocks were added to the blockchain

The parent block of a block is the preceding block on the blockchain. Dates and times are denoted by the
number of seconds since 1970–01–01 00:00:00 UTC.

5.4 Accounts

There is no explicit account information in the blockchain. The only account information is the state
root hash. To obtain account information, all the transactions in all the blocks of the blockchain must be
implemented on the world computer with respect to the initial state.

6 Logs

For every transaction, the following information is logged:

• final state root hash

• cumulative gas usage

For example, the final state root hash logged with regards to the third transaction of block 5,889,421 is:

0x915dd6ca7dca0c1d68c3cc84e0d8551394f353042af35bd6b5cf21084d643a27

That is the state root hash after the first three transactions have been applied. Since all transactions for
that block require 21,000 gas, the cumulative gas usage logged with regards to the third transaction is 63,000
gas. Smart contracts can request the logging of additional information.

6.1 Logging Requests

Smart contracts can request the logging of additional information. Specifically, smart contracts can request
the logging of named lists of values. For example, suppose a smart contract based game wanted to record
the following information for a player:

• account address

• health points

• gold coins

This information could be placed in a list named Player as in the following Solidity code declaration:

15



event Player(address user, uint256 health, uint256 gold);

Here is Solidity code to write specific player data to the blockchain:

emit Player(0xdf0b7310588741cad931de88bc6c4f687cdf0e16, 234, 198);

Note that variable values are stored but not variable names. Note also that user interfaces can access this
logged information but that smart contracts cannot.

Logging requests are identified on the blockchain by hashes formed from their list names and list value
types. For example, the aforementioned Player logging request is found on the blockchain by searching for
the Keccak 256 hash of the string “Player(address,uint256,uint256)”.

Bloom filters are always included with all smart contract logging requests. Bloom filters are hashes created
from data to speed up searches with minimal storage requirements.

Indexed Values

Another way to speed up logging request searches is to store logging request values in a special way. Specifi-
cally, they can be stored as if they were additional logging request identifiers. This avoids having to extract
them from the bytes encoding all the logging request values. Values stored in this manner are referred to as
indexed values. For example, the Ethereum Token Standard specifies logging requests with indexed values
as in this Solidity code:

event Transfer(address indexed sender, address indexed receiver, uint256 amount);

The log for transaction

0x104068d21afd428ce8eb5d9da155e11ba53414e40e088c884a678c6c203083d7

contains three logging request identifiers:

0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef

0x000000000000000000000000efb32e82cf9d65a828d6d99e12f0beab01a467a6

0x000000000000000000000000e71ac6142eaffc85ee3b9049facbcb13bc11402a

The first value is the Keccak 256 hash of the string “Transfer(address,address,unit256)”. The other values
are the sending and receiving addresses with regards to the corresponding token transfer.

7 Mining

Mining is the process of creating, validating, adding and distributing blocks. Computers, and their adminis-
trators, that perform this service are referred to as miners. Anyone computer on the network can become a
miner. People are incentivised to become miners because of the financial rewards. Mining amazingly allows
the Ethereum Classis system to be managed and secured in a trustless decentralized manner.

7.1 Proof Of Work Information

Valid blocks must contain certain numbers referred to as proof of work information. These numbers are also
referred to as nonces. Miners compete to be the first to find this proof of work information and thereby

16



add new blocks to the blockchain. Finding proof of work information is intentionally made difficult. This
difficulty is a main reason for the security of the blockchain.

The difficult process of finding adequate nonces involves the following. Nonces must be found such that
certain hashes of the blocks, with the nonces added, have numerical values below specified maxima. The
only way to find such hashes is to simply try as many nonce guesses as possible until adequate hashes are
found. The maxima are automatically adjusted to keep the average block addition time around 15 seconds.
Ethash is the hashing algorithm in this process.

7.2 Ethash

The Ethash hashing algorithm requires the determination of a certain extremely large directed acyclic graph
that depends on block numbers. Quickly calculating several Ethash hashes requires storing the entire directed
acyclic graph in memory. These large memory requirements thwart attempts to dominate the mining process
by building application specific integrated circuits (ASICs).

7.3 Uncle Blocks

In the contest to add blocks to the blockchain, the losing blocks can be leveraged to increase the security of
the blockchain. These losing blocks, to be used this way, must have parent blocks that are at most six blocks
from the growing end of the blockchain. Miners gain additional financial rewards when they mention the
hashes of the headers of these losing blocks in blocks that are accepted. This uncle block system is referred
to as the GHOST protocol.

Here is why uncle blocks increase the security of the blockchain. The mining contest will inevitably create
multiple chains of blocks. The convention is that the official chain is the one that is the most difficult to
reproduce. Adding uncle blocks increases the difficulty of reproducing the official chain.

Uncle blocks are especially useful when blocks are not propagating quickly throughout the network. This
leads to many losing blocks as miners keep adding blocks to outdated versions of the official chain. As block
creation times thereby increase, the security of the network decreases. This is fortunately mitigated with
uncle blocks.

7.4 Mining Pools

Because of the nature of the mining contest, the average expected mining rewards are proportional to the
amount of computational resources dedicated to mining. There can still be variability in payout frequencies
due to the random nature of the mining process. In order to deal with this variability, miners often join
groups referred to as mining pools.

Some mining pools may lead to large amounts of mining resources in the control of a few individuals.
Fortunately, there are trustless decentralized mining pools that avoid this risk.

7.5 Mining Rewards

Mining rewards consists of three parts:

Base Rewards This part depends on the block numbers. It is paid with newly created funds. Every five
million blocks (about 2.4 years) this part decreases by 20%. Initially it was 5 ETC. It changed to 4
ETC after block number five million and will continue to change in the future.

Define the block era E as a function of the block number N as follows (// denotes integer division):

17



E = (N - 1) // 5000000

Then the base reward is as follows:

5 � 0.8:superscript:`E`

Uncle Rewards This part depends on the number of uncle blocks included as well as the block numbers.
It is also paid with newly created funds. Each block can include at most two uncle blocks. The reward
for each uncle block is an additional 3.125% of the base reward.

For the block era E and number of uncles U, the total uncle reward is as follows:

0.03125 � U � (5 � 0.8:superscript:`E`)

After block number five million, miners that create the uncle blocks began getting this same reward per
uncle block.

Gas Rewards This part depends on the transactions included. It is paid from the originating accounts.
Miners execute the transactions and receive payments for the gas required. Each transactions specifies
a price paid per unit gas.

For gas requirements G1, G2, G3, … and corresponding gas prices P1, P2, P3, …, the total gas reward
is as follows:

G1 � P1 + G2 � P2 + G3 � P3 + …

Therefore, the total reward for creating a block is the following:

(1 + 0.03125 � U ) � (5 � 0.8:superscript:`E`) + G1 � P1 + G2 � P2 + G3 � P3 + …

Here is a Python script that uses this mining reward formula to calculate mining rewards:

#!/usr/bin/env python3

BASE_INITIAL = 5
BASE_PERCENT = 0.8
UNCLE_PERCENT = 0.03125
N_ERA_BLOCKS = 5e6

def mining_reward(block_number, num_uncles, gas_reqs, gas_prices):
"""
Calculates mining rewards from block information. The gas
information must be provided in lists or tuples. The gas
prices must be in ETC.
"""

era = (block_number - 1) // N_ERA_BLOCKS
base_reward = (BASE_PERCENT ** era) * BASE_INITIAL
uncle_reward = UNCLE_PERCENT * base_reward
uncle_rewards = num_uncles * uncle_reward
gas_rewards = 0
for (gas_req, gas_price) in zip(gas_reqs, gas_prices):

gas_rewards += gas_req * gas_price

return base_reward + uncle_rewards + gas_rewards

18



Here are some example calculations on real ETC blockchain data:

>>> mining_reward(5425392, 0, [], [])
4.0
>>> mining_reward(5423326, 1, [], [])
4.125
>>> mining_reward(5424471, 0, [36163, 36163] , [2e-8, 2e-8])
4.00144652
>>> mining_reward(5421363, 1, [21000, 21000, 21000, 21000, 21000], [5.5e-8, 2e-8, 2e-8,␣
↪→1.6e-8, 1e-8])
4.127541

The mining reward formula bounds the supply of ETC. Notice only the base and uncle rewards increase the
supply since the gas rewards just transfer existing funds. Because the uncle rewards vary, the eventual total
supply of ETC can only be approximated.

The formula for the future increase in supply per era, assuming a constant number of uncle blocks, is the
following:

5000000 � (1 + 2 � 0.03125 � U ) � (5 � 0.8:superscript:`E`)

The factor of 2 is necessary to include the uncle block creator rewards. The total supply can be estimated
from this formula by adding the contributions for the remaining eras. Era 192, which will occur around the
year 2474, is the last era which increases the supply.

Assuming no more uncle blocks gives a lower bound of about 198.3 million ETC. Assuming the maximum
number of uncle blocks gives an upper bound of about 210.6 million ETC.

Part IV

Appendices
blank

8 Recursive Length Prefix

Serialization is the process of encoding data structures into byte sequences. It is also referred to as marshalling
and pickling. Serialization is necessary when storing and sending data structures.

RLP is a serialization format created by Ethereum developers for storage and communications. It is used for
all data structures such as accounts, transactions and blocks. RLP is simpler than the alternatives such as
Extensible Markup Language (XML), JavaScript Object Notation (JSON), Binary JSON (BSON), Protocol
Buffers and Bencode.

RLP is also consistent. The same inputs are always converted to the same byte sequences. This is not true
of all serialization formats. For example, when encoding sets of key value pairs, some schemes do not specify
an ordering.

RLP operates on byte sequences and lists. Lists can contain byte sequences and other lists. The interpretation
of all inputs is handled by other protocols. For byte sequences, small headers are added which depend on
the length. For lists, the elements are encoded separately and concatenated. As with byte sequences, small
headers are added which depend on the length. Lastly, all lengths are encoded in big endian format.

19



Here are Python functions which implement RLP encoding and decoding:

#!/usr/bin/env python3

import math

N_BITS_PER_BYTE = 8

def n_bytes(integer):
"""
Finds the numbers of bytes needed to represent integers.
"""

return math.ceil(integer.bit_length() / N_BITS_PER_BYTE)

def get_len(input, extra):
"""
Finds the lengths of the longest inputs using the given extra values.
"""

n_bytes = input[0] - extra

return 1 + n_bytes + int.from_bytes(input[2:2 + n_bytes], "big")

def rlp_encode(input):
"""
Recursive Length Prefix encodes inputs.
"""

if isinstance(input, bytes):
body = input
if (len(body) == 1) and (body[0] < 128):

header = bytes([])
elif len(body) < 56:

header = bytes([len(body) + 128])
else:

len_ = len(body)
len_ = len_.to_bytes(n_bytes(len_), "big")
header = bytes([len(len_) + 183]) + len_

result = header + body
else:

body = bytes([])
for e in input:

body += rlp_encode(e)
if len(body) < 56:

header = bytes([len(body) + 192])
else:

len_ = len(body)
len_ = len_.to_bytes(n_bytes(len_), "big")
header = bytes([len(len_) + 247]) + len_

result = header + body

return result
(continues on next page)

20



(continued from previous page)

def rlp_decode(input):
"""
Recursive Length Prefix decodes inputs.
"""

if input[0] < 128:
result = input

elif input[0] < 184:
result = input[1:]

elif input[0] < 192:
result = input[1 + (input[0] - 183):]

else:
result = []
if input[0] < 248:

input = input[1:]
else:

input = input[1 + (input[0] - 247):]
while input:

if input[0] < 128:
len_ = 1

elif input[0] < 184:
len_ = 1 + (input[0] - 128)

elif input[0] < 192:
len_ = get_len(input, 183)

elif input[0] < 248:
len_ = 1 + (input[0] - 192)

else:
len_ = get_len(input, 247)

result.append(rlp_decode(input[:len_]))
input = input[len_:]

return result

Notice that the functions are recursive. Notice also that the functions work for inputs requiring up to about
18 million terabytes. Here are examples of their usage:

>>> rlp_encode(b"A")
b'A'

>>> rlp_encode(b"12345")
b'\x8512345'

>>> rlp_encode(20 * b"12345")
b
↪→'\xb8d12345123451234512345123451234512345123451234512345123451234512345123451234512345123
45123451234512345'

>>> rlp_encode([b"12345"])
b'\xc6\x8512345'

>>> rlp_encode([b"abcde", 3 * [b"12345"], [b"fghij"], b"67890", 4 * [b"klmno"]])
(continues on next page)

21



(continued from previous page)

b
↪→'\xf8\x85abcde\xd2\x8512345\x8512345\x8512345\xc6\x85fghij\x8567890\xd8\x85klmno\x85klmno
\x85klmno\x85klmno'

>>> rlp_decode(b"\x8512345")
b'12345'

>>> rlp_decode(b"\xc6\x8512345")
[b'12345']

>>> rlp_decode(b
↪→"\xf8\x85abcde\xd2\x8512345\x8512345\x8512345\xc6\x85fghij\x8567890\xd8\x85klmno\x85klmno\x85klmno\x85klmno
↪→")
[b'abcde', [b'12345', b'12345', b'12345'], [b'fghij'], b'67890', [b'klmno', b'klmno', b
↪→'klmno', b'klmno']]

RLP is an elegant and approachable serialization format used extensively by ETC. It can be quickly mastered
thereby illuminating this important aspect of the system.

9 Root Hashes

The Ethereum Classic (ETC) blockchain contains “root hashes” that help maintain the integrity of various
components of the ETC system. I will describe these root hashes including how to calculate them.

Some important ETC data structures are sets of key value pairs that are stored as Merkle Patricia tries.
Tries are trees of nodes. The top nodes correspond to the “roots” of the trees. Therefore, hashes associated
with the top nodes of Merkle Patricia tries are referred to as root hashes. Specifically, root hashes are the
Keccak 256 hashes of the Recursive Length Prefix (RLP) encodings of the top nodes.

ETC block headers contain root hashes for states, transaction lists and receipt lists. ETC block headers also
implicitly specify storage root hashes in the state root hashes.

Here is Python code that implements RLP encoding and decoding:

import math

BYTE_LEN = 8

def n_bytes(integer):
"""
Finds the numbers of bytes needed to represent integers.
"""

return math.ceil(integer.bit_length() / BYTE_LEN)

def get_len(input, extra):
"""
Finds the lengths of the longest inputs using the given extra values.
"""

n_bytes = input[0] - extra

(continues on next page)

22



(continued from previous page)

return 1 + n_bytes + int.from_bytes(input[2:2 + n_bytes], "big")

def encode(input):
"""
Recursive Length Prefix encodes inputs.
"""

if isinstance(input, bytes):
body = input
if (len(body) == 1) and (body[0] < 128):

header = bytes([])
elif len(body) < 56:

header = bytes([len(body) + 128])
else:

len_ = len(body)
len_ = len_.to_bytes(n_bytes(len_), "big")
header = bytes([len(len_) + 183]) + len_

result = header + body
else:

body = bytes([])
for e in input:

body += encode(e)
if len(body) < 56:

header = bytes([len(body) + 192])
else:

len_ = len(body)
len_ = len_.to_bytes(n_bytes(len_), "big")
header = bytes([len(len_) + 247]) + len_

result = header + body

return result

def decode(input):
"""
Recursive Length Prefix decodes inputs.
"""

if input[0] < 128:
result = input

elif input[0] < 184:
result = input[1:]

elif input[0] < 192:
result = input[1 + (input[0] - 183):]

else:
result = []
if input[0] < 248:

input = input[1:]
else:

input = input[1 + (input[0] - 247):]
while input:

if input[0] < 128:
len_ = 1

(continues on next page)

23



(continued from previous page)

elif input[0] < 184:
len_ = 1 + (input[0] - 128)

elif input[0] < 192:
len_ = get_len(input, 183)

elif input[0] < 248:
len_ = 1 + (input[0] - 192)

else:
len_ = get_len(input, 247)

result.append(decode(input[:len_]))
input = input[len_:]

return result

Here is Python code that calculates root hashes using the PySHA3 package. It requires the RLP code above
to be saved to an accessible location with the file name rlp.py. Invoke the root_hash function on Python
dictionaries representing sets of ETC key value pairs. All keys and key values must be Python byte strings:

import sha3
import rlp

HASH_LEN = 32
HEXADEC = 16

def remove(dict_, segment):
"""
Removes initial key segments from the keys of dictionaries.
"""

return {k[len(segment):] : v for k, v in dict_.items()}

def select(dict_, segment):
"""
Selects dictionary elements with given initial key segments.
"""

return {k : v for k, v in dict_.items() if k.startswith(segment)}

def find(dict_):
"""
Finds common initial segments in the keys of dictionaries.
"""

segment = ""
for i in range(min([len(e) for e in dict_.keys()])):

if len({e[i] for e in dict_.keys()}) > 1:
break

segment += list(dict_.keys())[0][i]

return segment

def patricia_r(dict_):
"""

(continues on next page)

24



(continued from previous page)

Creates Patricia tries that begin with regular nodes.
"""

pt = (HEXADEC + 1) * [None]
if "" in dict_:

pt[-1] = dict_[""]
del(dict_[""])

for e in {e[0] for e in dict_.keys()}:
pt[int(e, HEXADEC)] = patricia(remove(select(dict_, e), e))

return pt

def patricia_s(dict_):
"""
Creates Patricia tries composed of one key ending special node.
"""

pt = list(dict_.items())[0]
if len(pt[0]) % 2 == 0:

pt = (bytes.fromhex("20" + pt[0]), pt[1])
else:

pt = (bytes.fromhex("3" + pt[0]), pt[1])

return pt

def patricia(dict_):
"""
Creates Patricia tries from dictionaries.
"""

segment = find(dict_)
if len(dict_) == 1:

pt = patricia_s(dict_)
elif segment:

dict_ = remove(dict_, segment)
if len(segment) % 2 == 0:

pt = [bytes.fromhex("00" + segment), patricia_r(dict_)]
else:

pt = [bytes.fromhex("1" + segment), patricia_r(dict_)]
else:

pt = patricia_r(dict_)

return pt

def merkle(element):
"""
Encodes Patricia trie elements using Keccak 256 hashes and RLP.
"""

if not element:
merkle_ = b""

elif isinstance(element, str):
(continues on next page)

25



(continued from previous page)

merkle_ = bytes.fromhex(element)
elif isinstance(element, bytes):

merkle_ = element
else:

merkle_ = [merkle(e) for e in element]
rlp_ = rlp.encode(merkle_)
if len(rlp_) >= HASH_LEN:

merkle_ = sha3.keccak_256(rlp_).digest()

return merkle_

def merkle_patricia(dict_):
"""
Creates Merkle Patricia tries from dictionaries.
"""

return [merkle(e) for e in patricia(dict_)]

def root_hash(dict_):
"""
Calculates root hashes of Merkle Patricia tries from dictionaries.
"""

dict_ = {k.hex() : v for k, v in dict_.items()}

return sha3.keccak_256(rlp.encode(merkle_patricia(dict_))).hexdigest()

Here are sample calculations for all of the root hash types found in the ETC blockchain. They require the
root hash code above to be saved to an accessible location with the file name root_hash.py. The RLP code
above must be saved to an accessible location with the file name rlp.py. Lastly, the following code to convert
integers to Python byte strings must be saved to an accessible location with the file name int_to_bytes.py:

def int_to_bytes(number):
if number:

hex_ = hex(number)[2:]
if len(hex_) % 2 != 0:

hex_ = "0" + hex_
result = bytes.fromhex(hex_)

else:
result = b""

return result

For state root hash calculations, the keys of the Python dictionaries must be the Keccak 256 hashes of the
account addresses. The key values must be the RLP encodings of lists containing the corresponding account
nonces, balances, storage root hashes, and, smart contract hashes. One way to obtain state information is
with an ETC Geth node. For example, the following ETC Geth node command prints the state information
for block 1,000,000:

geth dump 1000000

Here is the beginning of the voluminous output:

26



{
"root": "0e066f3c2297a5cb300593052617d1bca5946f0caa0635fdb1b85ac7e5236f34",
"accounts": {

"843fd22c88d59e57ae1856a871a5d95e95b0a656": {
"balance": "52500000000000",
"nonce": 1,
"root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"codeHash":
"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
,

"code": "",
"storage": {}

},
"dcd0b6fa4f0a26a7b12325b0d09b5b809c5aef84": {

"balance": "9375377890126000",
"nonce": 1,
"root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"codeHash":
"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
,

"code": "",
"storage": {}

},
"7d62878a7235e95d56f802f80835543cac711f90": {

"balance": "204544100000000000",
"nonce": 0,
"root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"codeHash":
"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
,

"code": "",
"storage": {}

},
"67db390312dc02a140c358add4f37966c7775096": {

"balance": "0",
"nonce": 2,
"root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"codeHash":
"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
,

"code": "",
"storage": {}

},

...etc.

The following code prints the state root hash for block 1,000,000 which is
0x0e066f3c2297a5cb300593052617d1bca5946f0caa0635fdb1b85ac7e5236f34. It requires the aforementioned
state information to be saved to an accessible location with the file name state_1000000:

import root_hash
import sha3
import rlp

(continues on next page)

27



(continued from previous page)

import int_to_bytes

dict_ = {}
state = eval(open("state_1000000", "r").read())
for address in state["accounts"]:

account = state["accounts"][address]
account = [int_to_bytes.int_to_bytes(int(account["nonce"])),

int_to_bytes.int_to_bytes(int(account["balance"])),
bytes.fromhex(account["root"]),
bytes.fromhex(account["codeHash"])]

key = sha3.keccak_256(bytes.fromhex(address)).digest()
value = rlp.encode(account)
dict_[key] = value

print(root_hash.root_hash(dict_))

For transaction list root hash calculations, the keys of the Python dictionaries must be the RLP encodings of
the transaction indices starting from zero. The key values must be the RLP encodings of lists containing the
corresponding transaction nonces, gas prices, gas usage maxima, destination addresses, ether sent, data sent
and digital signature components. The following code prints the transaction list root hash for the transactions
in block 4,000,003 which is 0xad79d498b7e407d3a2b32c13a380ee93635da2b3e0696c39563cbd5c32d368b2:

import root_hash
import sha3
import rlp
import int_to_bytes

key_1 = rlp.encode(int_to_bytes.int_to_bytes(0))

nonce = int_to_bytes.int_to_bytes(1514565)
gas_price = int_to_bytes.int_to_bytes(20000000000)
gas_max = int_to_bytes.int_to_bytes(50000)
dest = 0x7b96a5006d5fc86d05f8799fe1fc6f7d23b24969
dest = int_to_bytes.int_to_bytes(dest)
ether = int_to_bytes.int_to_bytes(1001525814273650153)
data = b""
v = int_to_bytes.int_to_bytes(157)
r = 0x8815ebbcdb56717a30193db4629fa7565d2fb06c6fba2aaf0db06deaf932955d
r = int_to_bytes.int_to_bytes(r)
s = 0x4dbd4dcb648114859f57122d804b85c2dd60d0b502fb93d0ef770d50bfa3a59d
s = int_to_bytes.int_to_bytes(s)
trans = [nonce, gas_price, gas_max, dest, ether, data, v, r, s]
value_1 = rlp.encode(trans)

key_2 = rlp.encode(int_to_bytes.int_to_bytes(1))

nonce = int_to_bytes.int_to_bytes(43565)
gas_price = int_to_bytes.int_to_bytes(20000000000)
gas_max = int_to_bytes.int_to_bytes(21000)
dest = 0x7ccfb3028404225e4e9da860f85274e30ccc9275
dest = int_to_bytes.int_to_bytes(dest)
ether = int_to_bytes.int_to_bytes(109404508089999998976)

(continues on next page)

28



(continued from previous page)

data = b""
v = int_to_bytes.int_to_bytes(28)
r = 0x8d6e2fcfe032d2612d2ea56da6d07b6a94004a4ec7cbe2c3f086db1a194aa679
r = int_to_bytes.int_to_bytes(r)
s = 0x6ed1333497c12b4549e55d117977bf60bb96872dfb05816fb7ce25c7396ef23a
s = int_to_bytes.int_to_bytes(s)
trans = [nonce, gas_price, gas_max, dest, ether, data, v, r, s]
value_2 = rlp.encode(trans)

print(root_hash.root_hash({key_1 : value_1, key_2 : value_2}))

For receipt list root hash calculations, the keys of the Python dictionaries must be the RLP encod-
ings of the receipt indices starting from zero. The key values must be the RLP encodings of lists
containing the corresponding receipt state root hashes, cumulative gas amounts, log Bloom filters and
logs. The following code prints the receipt list root hash for the receipts in block 4,000,003 which is
0x4b3b43affc2927a152b9d6f18e378cf33671f8606e8549de292ae36b8a691584:

import root_hash
import sha3
import rlp
import int_to_bytes

key_1 = rlp.encode(int_to_bytes.int_to_bytes(0))

state = "abca6dd8fb332962c1c14c02d13b2082aee152496dc809d9642e2deca07fb7c2"
gas = 0x5208
bloom = 256 * "00"
logs = []
receipt = [bytes.fromhex(state),

int_to_bytes.int_to_bytes(gas),
bytes.fromhex(bloom),
logs]

value_1 = rlp.encode(receipt)

key_2 = rlp.encode(int_to_bytes.int_to_bytes(1))

state = "029b0eb2c76ff08a1cf47aba4be53ff1c20b01026206eca248b47e0657f97524"
gas = 0xa410
bloom = 256 * "00"
logs = []
receipt = [bytes.fromhex(state),

int_to_bytes.int_to_bytes(gas),
bytes.fromhex(bloom),
logs]

value_2 = rlp.encode(receipt)

print(root_hash.root_hash({key_1 : value_1, key_2 : value_2}))

For storage root hash calculations, the keys of the Python dictionaries must be the Keccak
256 hashes of the storage indices for all nonzero storage values. The key values must be
the RLP encodings of the corresponding storage values. The following code prints the storage
root hash for the account with the address 0xd4eae4ae8565f3ecf218191fb267941d98a2c77a which is
0x9f630ea9c8cc6e9f7ecbc08cb7f9e901c14b788cc8f2ae64e3134cf3cb089f55. Note that this result was correct

29



as of block 5,874,861 but may possibly change afterwards:

import root_hash
import sha3
import rlp
import int_to_bytes

KEY_LEN = 32
ZERO = b"\x00"

dict_ = {}
storage = [(0, 0x51f24771a5a2720456076e7c81d59753dac20e1f),

(1, 0x4563918244f40000),
(3, 0x55c64da8),
(4, 0x6f05b59d3b20000),
(5, 0x4fb5acbe16ffdda225cb14c64aa84c7e253b08ae)]

for e in storage:
key = int_to_bytes.int_to_bytes(e[0])
key = (KEY_LEN - len(key)) * ZERO + key
key = sha3.keccak_256(key).digest()
value = rlp.encode(int_to_bytes.int_to_bytes(e[1]))
dict_[key] = value

print(root_hash.root_hash(dict_))

Root hashes are vital for the operation of the ETC world computer. The ETC system utilizes state, trans-
action list, receipt list and storage root hashes. These ETC root hashes can be found with a detailed recipe
involving RLP encodings, Keccak 256 hashes and Merkle Patricia tries.

10 Bloom Filters

Millions of people search the Internet, government databases, private databases and blockchains everyday
for medical advice, financial updates, weather reports, maps and more. Likewise, millions of people want or
need fast searches.

An effective method to speed up many searches is the use of indexes. Indexes, like those at back of textbooks,
provide the locations of all search terms. A possible drawback is that they require large amounts of storage.

An effective method to speed up many searches, with less storage requirements, is the use of Bloom filters.
These are important in many areas such as mobile and embedded devices.

Bloom filters are binary strings used to quickly determine set membership with nominal storage requirements.
Browsers use them to detect malicious websites. Databases use them to avoid searching for nonexistent data.

Bloom filters require less memory than indexes, but, they sometimes give false positives. In other words,
they might claim an object is a member of a set when it is not. It is noteworthy that Bloom filters never
give false negatives. They never claim an object is not in a set when it actually is. Browser Bloom filters
might incorrectly claim safe websites are malicious, but, they will never claim malicious websites are safe.
Fortunately, extra checks can always be performed to eliminate any false positives.

To build a Bloom filter for the set {X1, X2, X3, …, X:subscript:n}, with hash function H, calculate H(X1) |
H(X2) | H(X3) | … | H(X:subscript:n). | is the bitwise OR operator. H is only valid if the number of set bits
(ones) in all hashes is always less than or equal to some selected maximum.

Larger Bloom filters have less false positives. Bloom filters of several megabytes are not uncommon. As
hash functions typically do not have large enough hashes, not to mention hashes with required number of

30



set bits, adequate hashes are often constructed from multiple hash functions. A common recipe is to have a
group of hash functions each set a single bit in the construction of a valid hash. For example, to set a bit in
a hash with 223 bits, the first 23 bits of the Secure Hash Algorithm 1 (SHA1) hash can be used to select the
position of a bit to set.

To determine if an object X might be in a set with Bloom filter B, built with hash function H, determine if
H(X) & B = H(X). & is the bitwise AND operator. Notice that the test only returns true if all the set bits
in H(X) are also set in B. Basically, groups of set bits in B correspond to elements. X might be a member
of the set if and only if its group of set bits corresponds to a group in B. The reason B can only determine
if X might be in the set is because B contains the bits of several elements.

Bloom filters also allow light clients to quickly and privately obtain account information without downloading
the entire blockchain.

Bloom filters are a powerful tool that allows additional innovation in blockchain applications and many other
areas in the twenty first century.

11 Digital Signatures

Ethereum Classic (ETC) digital signatures secure transactions. These involve elliptic curve cryptography
and the Elliptic Curve Digital Signature Algorithm (ECDSA). I will describe ETC digital signatures without
these topics using only small Python functions.

Signing and verifying will be implemented using the following four constants and three functions:

N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
P = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

def invert(number, modulus):
"""
Finds the inverses of natural numbers.
"""

result = 1
power = number
for e in bin(modulus - 2)[2:][::-1]:

if int(e):
result = (result * power) % modulus

power = (power ** 2) % modulus

return result

def add(pair_1, pair_2):
"""
Finds the sums of two pairs of natural numbers.
"""

if pair_1 == [0, 0]:
result = pair_2

elif pair_2 == [0, 0]:
result = pair_1

else:
(continues on next page)

31



(continued from previous page)

if pair_1 == pair_2:
temp = 3 * pair_1[0] ** 2
temp = (temp * invert(2 * pair_1[1], P)) % P

else:
temp = pair_2[1] - pair_1[1]
temp = (temp * invert(pair_2[0] - pair_1[0], P)) % P

result = (temp ** 2 - pair_1[0] - pair_2[0]) % P
result = [result, (temp * (pair_1[0] - result) - pair_1[1]) % P]

return result

def multiply(number, pair):
"""
Finds the products of natural numbers and pairs of natural numbers.
"""

result = [0, 0]
power = pair[:]
for e in bin(number)[2:][::-1]:

if int(e):
result = add(result, power)

power = add(power, power)

return result

The invert function defines an operation on numbers in terms of other numbers referred to as moduli. The
add function defines an operation on pairs of numbers. The multiply function defines an operation on a
number and a pair of numbers. Here are examples of their usage:

>>> invert(82856, 7164661)
3032150

>>> add([84672, 5768], [15684, 471346])
[98868508778765247164450388534339365517943901419260061027507991295919394382071,␣
↪→110531019976596004792591549651085191890711482591841040377832420464376026143223]

>>> multiply(82716, [31616, 837454])
[82708077205483544970470074583740846828577431856187364454411787387343982212318,␣
↪→30836796656275663256542662990890163662171092281704208118107591167423888588304]

Private keys are any nonzero numbers less than the constant N. Public keys are the products of these private
keys and the pair (Gx, Gy ). For example:

>>> private_key = 296921718

>>> multiply(private_key, (Gx, Gy))
[29493341745186804828936410559976490896704930101972775917156948978213464516647,␣
↪→14120583959514503052816414068611328686827638581568335296615875235402122319824]

Notice that public keys are pairs of numbers.

Signing transactions involves an operation on the Keccak 256 hashes of the transactions and private keys.
The following function implements this operation:

32



import random

def sign(hash, priv_key):
"""
Signs the hashes of transactions.
"""

result = [0, 0]
while (0 in result) or (result[1] > N / 2):

temp = random.randint(1, N - 1)
result[0] = multiply(temp, (Gx, Gy))[0] % N
result[1] = invert(temp, N) * (hash + priv_key * result[0])
result[1] = result[1] % N

return result

For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

>>> private_key = 296921718

>>> sign(hash, private_key)
[12676003675279000995677412431399004760576311052126257887715931882164427686866,␣
↪→17853929027942611176839390215748157599052991088042356790746129338653342477382]

>>> sign(hash, private_key)
[18783324464633387734826042295911802941026009108876130700727156896210203356179,␣
↪→41959562951157235894396660120771158332032804144867595196194581439345450008533]

Notice that digital signatures are pairs of numbers. Notice also that the sign function can give different
results for the same inputs!

Verifying digital signatures involves confirming certain properties with regards to the Keccak 256 hashes and
public keys. The following function implements these checks:

def verify(sig, hash, pub_key):
"""
Verifies the signatures of the hashes of transactions.
"""

temp_1 = multiply((invert(sig[1], N) * hash) % N, (Gx, Gy))
temp_2 = multiply((invert(sig[1], N) * sig[0]) % N, pub_key)
sum = add(temp_1, temp_2)
test_1 = (0 < sig[0] < N) and (0 < sig[1] < N)
test_2 = sum != [0, 0]
test_3 = sig[0] == sum[0] % N

return test_1 and test_2 and test_3

For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

(continues on next page)

33



(continued from previous page)

>>> private_key = 296921718

>>> public_key = multiply(private_key, (Gx, Gy))

>>> public_key
[29493341745186804828936410559976490896704930101972775917156948978213464516647,␣
↪→14120583959514503052816414068611328686827638581568335296615875235402122319824]

>>> signature = sign(hash, private_key)

>>> signature
[54728868372105873293629977757277092827353030346967592768173610703187933361202,␣
↪→18974025727476367931183775600389145833964496722266015570370178285290252701715]

>>> verify(signature, hash, public_key)
True

To verify that public keys correspond to specific ETC account addresses, confirm that the rightmost 20 bytes
of the public key Keccak 256 hashes equal those addresses.

Strictly speaking, ETC digital signatures include additional small numbers referred to as recovery identifiers.
These allow public keys to be determined solely from the signed transactions.

I have explained ETC digital signatures using code rather than mathematics. Hopefully seeing how signing
and verifying can be implemented with these tiny functions has been useful.

12 How Nodes Find Each Other

Ethereum Classic (ETC) network nodes have accurate information about the network in spite of it being
decentralized and constantly changing. I will describe how this happens.

Some network nodes are always available and accepting of new connections from other network nodes. These
are referred to as bootstrap nodes. New network nodes first connect to bootstrap nodes to obtain information.
Here is the current Geth bootstrap node list with network nodes specified using “enode” strings:

enode://
↪→e809c4a2fec7daed400e5e28564e23693b23b2cc5a019b612505631bbe7b9ccf709c1796d2a3d29ef2b045f210caf51e3c4f5b6d3587d43ad5d6397526fa6179@174.
↪→112.32.157:30303
enode://
↪→6e538e7c1280f0a31ff08b382db5302480f775480b8e68f8febca0ceff81e4b19153c6f8bf60313b93bef2cc34d34e1df41317de0ce613a201d1660a788a03e2@52.
↪→206.67.235:30303
enode://
↪→5fbfb426fbb46f8b8c1bd3dd140f5b511da558cd37d60844b525909ab82e13a25ee722293c829e52cb65c2305b1637fa9a2ea4d6634a224d5f400bfe244ac0de@162.
↪→243.55.45:30303
enode://
↪→42d8f29d1db5f4b2947cd5c3d76c6d0d3697e6b9b3430c3d41e46b4bb77655433aeedc25d4b4ea9d8214b6a43008ba67199374a9b53633301bca0cd20c6928ab@104.
↪→155.176.151:30303
enode://
↪→814920f1ec9510aa9ea1c8f79d8b6e6a462045f09caa2ae4055b0f34f7416fca6facd3dd45f1cf1673c0209e0503f02776b8ff94020e98b6679a0dc561b4eba0@104.
↪→154.136.117:30303
enode://
↪→72e445f4e89c0f476d404bc40478b0df83a5b500d2d2e850e08eb1af0cd464ab86db6160d0fde64bd77d5f0d33507ae19035671b3c74fec126d6e28787669740@104.
↪→198.71.200:30303 (continues on next page)

34



(continued from previous page)

enode://
↪→5cd218959f8263bc3721d7789070806b0adff1a0ed3f95ec886fb469f9362c7507e3b32b256550b9a7964a23a938e8d42d45a0c34b332bfebc54b29081e83b93@35.
↪→187.57.94:30303
enode://
↪→39abab9d2a41f53298c0c9dc6bbca57b0840c3ba9dccf42aa27316addc1b7e56ade32a0a9f7f52d6c5db4fe74d8824bcedfeaecf1a4e533cacb71cf8100a9442@144.
↪→76.238.49:30303
enode://
↪→f50e675a34f471af2438b921914b5f06499c7438f3146f6b8936f1faeb50b8a91d0d0c24fb05a66f05865cd58c24da3e664d0def806172ddd0d4c5bdbf37747e@144.
↪→76.238.49:30306
enode://
↪→6dd3ac8147fa82e46837ec8c3223d69ac24bcdbab04b036a3705c14f3a02e968f7f1adfcdb002aacec2db46e625c04bf8b5a1f85bb2d40a479b3cc9d45a444af@104.
↪→237.131.102:30303

All enode strings contain Elliptic Curve Digital Signature Algorithm (ECDSA) public keys and internet
sockets (addresses and ports).

Additional network nodes are found by network nodes storing and sharing lists of network nodes that have
recently communicated with them. Ignoring older activity decreases the probability of sharing information
about nonexistent network nodes. Network nodes continually communicate and thereby continually share
their information. The whole process starts with bootstrap nodes and quickly includes many other network
nodes.

Here is the current list for my Parity ETC node:

enode://
↪→9fe33f0ebc5b0ce51879afa3f767b2a180536dafb34b5af24cef11bb1c136b90d7839d6340d912ccd1f8e917a9e24d0d908ca4811a15889fcbf70733d7411608@122.
↪→215.240.147:30303
enode://
↪→e1520f00ff23e82c87411964a70c08e77592aab16647ddc2b53a5617808330184aaaac786002d31e40a1db6ec1447d6b0d8ebc7d9099cc90d606b7936fd9b908@172.
↪→86.120.213:30303
enode://
↪→a68a96163c842f1175d8eb515ca60ab93e80ab581cded1a11527f53e89f1f1cfb624e3f0a79a5dd76ee0fad54758ec9515be38158b2cf01635dcf444db6716db@46.
↪→101.169.110:30303
enode://
↪→e5ddf2ea2373697136681eaba314039ce60b99656c4eefabb2d01032d77dae384919941589f1d9309c340a854310b556d059521414db93c3b0d5ed5ff1308dc4@13.
↪→125.218.87:30303
enode://
↪→f5d269ebbfb94494e7e2251a49f430df5d7f510cf04173dad1229b12e4929e6a65f4c76cf9cb0f789c30f7a9d2e50a453a64bb0f797429fe3f2e30cbd0198c0b@35.
↪→230.160.215:30303
enode://
↪→efce38b6ee1baa4fa0a48c4202cc175fe4668a376365bbd0b9735a06de04593c822e9064d6664e346af5c98efc0dd0e4f3f1b8b64364aba5f2c51b259accc41c@47.
↪→98.232.156:30303
enode://
↪→c38fadc7d03341aaa856c41d8af9733d535cbbde3e3e103dd97c1bf6a0e15f8a6ed77c7bfb04784d9be7bdef884172a1fca8367f3750d4e3d0e9a0e95db57e29@47.
↪→97.72.201:30303
enode://
↪→10a0e3e2e4d9be6eab3615cd441da32dcebc7d51df9639c92eae35a7a434cf2c8e2bec756573ca9f49f48d6ed65917d4fbd220658d21888ee75799de955f2580@13.
↪→125.156.101:30303
enode://
↪→c1e0e9f8607afc20b70dc6f2b19258e879841561360385c63d004a9cdb1a93f1122e061ad405ff98a03f3413a945c9299e19d6bd6bc86a17682e34f811f12d32@52.
↪→57.166.35:30303
enode://
↪→f4a1153780ccb0b4e2c86bdf11837035f621ddc09bcf7d874a9879bc20adf5a32ce0b5cda91674873ad4cd89ca0b6da6a89197102922ea58d3f98ec421368240@167.
↪→114.236.10:30303 (continues on next page)

35



(continued from previous page)

enode://
↪→7c253d4172cb27a7c514c35ee1cad1ff0fa1a6d2d2ca1c3a6f67d7416173bf0f36c64d6caf5f3cf13700e81104b10642787c17bbfb00e67d1a85c5a88c613cd6@13.
↪→125.206.176:30303
enode://
↪→ed81e7f825a5309c3c93698a440055f10fa617342f6e8c62645b3ee813515c488addee22a3175223b4d0bc410c0b3f0a2bc25d67ee2d75cfa4f8bac6006a8f6a@109.
↪→236.81.109:30307
enode://
↪→8d45cb061b744f444d38c58f2fd972214f565e24539eb5ccd85612290a66d9da885a1012576784ab2a2cb93050a4ef99e6ba0931963fe7ed4370def400349dbf@149.
↪→202.174.161:30303
enode://
↪→1275a4224ee8ee7cedc5ab62a118428f6f4ec2841440cefacf8d01c368ac345d687052c667204e52cc22f0b85de0fc8195aceee5d2d28d2c69d3a3644aecb840@115.
↪→22.91.166:30303
enode://
↪→c60ae3bccd9ccded51ad5e8c2aa6bad8fad072c1809779566c85ca17f2f5d810fd6c11761e892c45787e9f27a213cc9ade3244f7a8f8e9fb071e8281b263740e@61.
↪→100.182.189:40404
enode://
↪→feaf167dad6e117bc07c507b8cf4aa1978cdcc592d218bde7782c67abc53dbf02ea8aa6799946aee4f8e5f73c58dbc28eadaa8739431bc0233f78562c5266c24@13.
↪→125.25.106:30305
enode://
↪→ba8efe932cbf32f0d8ee9a0af45ade59dd26e81cafdc86497e57aca0ae5e9bcc64ee058a4c844bc0d06ceea2db062f377705870b14c72db2977f110485d809cf@5.
↪→9.6.244:30303
enode://
↪→c989f4ceea49188426561d2a1833c157cfd137948ae054ab47e770f4032b7708ac59121e13d0c267c23779b96cae258d39e4c05ac55b6a7300fbaa79dd19b541@52.
↪→30.37.160:30305
enode://
↪→4329eb2c7e62206421469d413ddc6f8bdf10eb176aaec065282bd31d198ace82871034fa4af34ad0ed5051d2d9d82845a6729f254220fffd91175cddb20318cd@167.
↪→114.236.167:30303
enode://
↪→485f2c2368cfb6614026058e37c4d1a63aba7285df77663198c96824dc9b44b2d3861198d42d8c00f7f2d3ee7a00619ebb6e2f70ee96cfd0ca13d7a98a438b52@52.
↪→221.229.254:30303
enode://
↪→78f960f4cc378980409704957818e55bb671775d3ca3f731fb8a0468a1156b7158a42e921f4077eaf9de3e8a6905360fca629dfbdb089b083aa0e46a0554ce09@159.
↪→65.3.132:30303
enode://
↪→5eb58e0bda31307b19b6d25350bba7b812fc0337cb34e79a5796bbdcaf3bace0535d56e2f485cab7839d03754d5bacb98d666c8c2e9a2ca3c8fe5a9e2b0f63a1@47.
↪→91.28.47:30305
enode://
↪→ad132e9609f8288c07e8958af5b1c77dad6001af774e5a5b3d3e06bd339b8a52e63a70ba92df917ddaa1494ed228c735cc5be00f4d59cffe995eb574eb467827@120.
↪→131.14.202:30303
enode://
↪→f926fb79061578191b8d125d6fca889f711c94d1dab19f3c106671812a098bb7837b5b40c67f8f0ae2bd0a0410cfa57a00270af8ebe7e9162e3f7b034df554eb@13.
↪→78.23.204:30303
enode://
↪→a38b8841524f4a0f6e4161511ef9ed60b7da1a5303a316fd99d997c5f2642313eab3cbe560b1c62dab1ac9be8e92fe61611c41728c3628b59d2a23ae731ea717@165.
↪→227.151.104:30303

Amazingly, ETC nodes can find each other within a headless and ever changing system. There are many
such brilliant riches to appreciate in the ETC design when one looks.

36



13 Code Is Law Principle

The code is law principle is the principle that no one has the right to censor the execution of code on the
ETC blockchain.

14 A Crypto-Decentralist Manifesto By Bit Novosti

Blockchains are going to rule the world, providing a mechanism for scaling social and economic cooperation
to an unprecedented level — a truly global scale. Such cooperation will involve not only human beings, groups
and associations but also a growing multitude of increasingly independent artificial agents.

Every blockchain creates a social network around its applications, with network value growing exponentially
with the number of participants in accordance with Reed’s Law. This value isn’t extracted by intermedi-
aries or controllers, as with previous centralized models. Instead, it’s shared among participants, providing
economic incentives for cooperation without coercion.

Not all blockchains are created equal. There are three key characteristics that make scalable blockchain-
enabled cooperation possible: openness, neutrality and immutability.

Openness is necessary. It goes without saying that the rules of the game should be open for anyone
to see and understand. Anyone should be able to participate in any layer of the system without asking
for any permission whatsoever. Anyone should be able to use the network in accordance with its rules.
Anyone should be able to create their own client implementing the open protocol. Anyone should be able
to contribute to network security, and so on. No registration, identification or other preconditions should
limit participation. All such limitations prevent the network from scaling and their enforcement creates
centralization risks.

Neutrality is necessary. It’s important for anyone participating in blockchain-enabled cooperation to be
on an equal footing with everyone else. It doesn’t matter if you wield huge economic power or only a tiny
amount. It doesn’t matter whether you’re a saintly Mother Theresa or a vicious drug dealer. It doesn’t
matter whether you’re a human or a refrigerator. It doesn’t matter what you believe in, what political
theory you subscribe to, or whether you’re a moral or immoral person. A participant’s ethnicity, age, sex,
profession, social standing, friends or affiliations, make or model, goals, purposes or intentions — none of
this matters to the blockchain even a bit. The rules of the game are exactly the same for everyone, period.
Without neutrality, the system is skewed towards one set of participants at the expense of others. In that
case, it’s less likely to gain universal acceptance and maximize network value for everyone.

Immutability is necessary. The blockchain is a truth machine preserving one universally accepted version
of history, one immutable sequence of events. What’s true once is always true, regardless of political or
business interests, and no amount of lobbying can change that. If it’s simply not possible to change history,
then no resources are wasted on the effort. If there are any loopholes at all, then sufficiently motivated
and determined interest groups will exploit them at the expense of others, diminishing network value for
everyone.

The rules governing the blockchain network are known in advance. They’re exactly the same for everyone
and not subject to change other than with 100% consensus. Yes, it must be 100%. Because any change to
the system’s rules that not all participants freely agree to creates a network split, diminishing network value
for everyone.

It’s impossible to achieve these blockchain characteristics without the system being truly decentralized.
If any aspect of the blockchain system becomes subject to centralized control, this introduces an attack
vector enabling the violation of one or more of the key blockchain characteristics. It may be possible to
limit participation (such as by enforcing AML/KYC rules), thus violating openness. It may be possible to
enforce discriminatory policies (such as by filtering “illegal” transactions), thus violating neutrality. It may
be possible to rewrite the history of events (such as by confiscating or “redistributing” funds), thus violating

37

https://en.wikipedia.org/wiki/Reed%27s_law


immutability. Introducing centralized chokepoints creates a precondition for the introduction of “blockchain
intermediaries or controllers” who can siphon value out of the system at other participants’ expense.

So decentralization is the most important feature of blockchain systems, the one everything else depends
on. With decentralization, blockchains will come to rule the world. Without it, they’ll be “contained” and
railroaded into niche applications.

We decentralists are committed to keeping blockchains open, neutral and immutable. We’re committed
to keeping blockchain systems decentralized. This informs all our actions and positions towards any devel-
opments in the crypto world and beyond. All attempts to violate any of the key blockchain characteristics
should be fought. All changes to a blockchain’s rules that introduce new centralization risks or strengthen ex-
isting ones should be fought. Only developments that are clearly beneficial to decentralization or strengthen
the three key blockchain characteristics should be supported and encouraged.

The blockchain revolution won’t be centralized. Let’s make sure of it.

Onward.

15 The Ethereum Classic Declaration Of Independence

Let it be known to the entire world that on July 20th, 2016, at block 1,920,000, we as a community of
sovereign individuals stood united by a common vision to continue the original Ethereum blockchain that
is truly free from censorship, fraud or third party interference. In realizing that the blockchain represents
absolute truth, we stand by it, supporting its immutability and its future. We do not make this declaration
lightly, nor without forethought to the consequences of our actions.

Looking Back

It should be stated with great gratitude that we acknowledge the creation of the Ethereum blockchain
platform by the Ethereum Foundation and its founding developers. It certainly can be said without objection,
that without their hard work and dedication that we as a community would not be where we are today.

From its inception, the Ethereum blockchain was presented as a decentralized platform for “applications
that run exactly as programmed without any chance of fraud, censorship, or third-party interference” [1]
. It provided a place for the free association of ideas and applications from across the globe without fear
of discrimination while also providing pseudonymity. In this decentralized platform, many of us saw great
promise.

List of Grievances

It is however, with deep regret, that we as a community have had to spontaneously organize [2] to defend the
Ethereum blockchain platform from its founding members and organization due to a long train of abuses,
specifically by the leadership of the Ethereum Foundation. These grievances are as follows.

• For rushing the creation of a “soft fork,” which was comprised of a minor change in the Ethereum
blockchain code for the sole purpose of creating a blacklist and censoring transactions that normally
would have been allowed.

• For neglecting the full implications of the “soft fork” by the Ethereum blockchain as a warning that
they were violating the principles and values coded therein. [3]

• For creating an unrepresentative voting mechanism called the “carbon vote”, which they initially stated
was “unofficial” [4] only to contradict these statements a day before determining to hard fork. [5]

• For rushing the creation of a “hard fork,” which was comprised of an irregular state change in the
Ethereum blockchain code that violated the properties of immutability, fungibility, and the sanctity of
the ledger.

38

https://ethereum.org
https://www.reddit.com/r/EthereumClassic/comments/4u4o61/call_for_action_what_can_i_do_to_help_ethereum
https://blog.ethereum.org/2016/06/28/security-alert-dos-vulnerability-in-the-soft-fork
https://www.reddit.com/r/ethereum/comments/4s0rz6/a_vote_that_nobody_knows_about_is_not_a_vote/d55nye3
https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork


• For willfully deciding to not include replay protection in the “hard fork”, an action which has unnec-
essarily cost exchanges and thousands of users the rightful ownership of their Ether tokens. [6]

Respecting the Values Essential for Blockchains

One might ask what harm can be done from changing the code of the Ethereum blockchain and bailing out
[7] “The DAO” token holders, which is not an unreasonable question. Many of us have an innate sense of
right and wrong, so at first glance rescuing “The DAO” felt right. However, it violated two key aspects of
what gives peer-to-peer cash [8] and smart contract-based systems value: fungibility and immutability.

Immutability means the blockchain is inviolable. That only valid transactions agreed upon via a crypto-
graphic protocol determined by mathematics are accepted by the network. Without this, the validity of all
transactions could come into question, since if the blockchain is mutable, any transaction could be modified.
Not only does this leave transactions open to fraud, but it might spell disaster for any distributed application
running atop the platform.

Fungibility is the feature of money where one unit equals another unit. For instance, a Euro equals another
Euro just as a Bitcoin equals another Bitcoin. Unfortunately, an ETH no longer equals another ETH. The
alleged attacker’s ETH was no longer as good as your ETH and was worthy of censorship, deemed necessary
by a so-called majority.

Ultimately, these breaches in fungibility and immutability were made possible by the subjective morality
judgements of those who felt a burning desire to bring the alleged attacker to justice. However, in doing so
they compromised a core pillar of Ethereum just to do what they felt was in the interests of the “greater
good”. In a global community where each individual has their own laws, customs, and beliefs, who is to say
what is right and wrong?

Deeply alarmed that these core tenets were disregarded by many of the Foundation’s developers, and a sizable
portion of Ethereum participants, we, as a community, have organized and formed a code of principles to
follow for the Ethereum Classic chain.

The Ethereum Classic Code of Principles

We believe in a decentralized, censorship-resistant, permission-less blockchain. We believe in the original
vision of Ethereum as a world computer that cannot be shut down, running irreversible smart contracts. We
believe in a strong separation of concerns, where system forks of the codebase are only possible when fixing
protocol level vulnerabilities, bugs, or providing functionality upgrades. We believe in the original intent of
building and maintaining a censorship-resistant, trustless and immutable development platform.

Herein are written the declared values by which participants within the Ethereum Classic community agree.
We encourage that these principles not be changed via edict by any individual or faction claiming to wield
power, authority or credibility to do so.

We, as a community agree that:

• The purpose of Ethereum Classic is to provide a decentralized platform that runs decentralized appli-
cations which execute exactly as programmed without any possibility of downtime, censorship, fraud
or third party interference.

• Code is law; there shall be no changes to the Ethereum Classic code that violate the properties of
immutability, fungibility, or sanctity of the ledger; transactions or ledger history cannot for any reason
be reversed or modified.

• Forks and/or changes to the underlying protocol shall only be permitted for updating or upgrading
the technology on which Ethereum Classic operates.

• Internal project development can be funded by anyone, whether via a trusted third party of their choice
or directly, using the currency of their choice on a per project basis and following a transparent, open
and decentralized crowdfunding protocol.

39

https://pbs.twimg.com/media/CopwJVHXEAABEKd.jpg
https://dictionary.cambridge.org/us/dictionary/english/bailout
https://bitcoin.org/bitcoin.pdf


• Any individual or group of individuals may propose improvements, enhancements, or upgrades to
existing or proposed Ethereum Classic assets.

• Any individual or group of individuals may use the Ethereum Classic decentralized platform to build
decentralized applications, hold crowdsales, create autonomous organisations/corporations, or for any
other purpose they deem suitable.

Looking Forward

For the many reasons listed above, we have chosen to rename the original blockchain “Ethereum Classic”
with the ticker symbol “ETC”, so that the community and all other participants can identify the original,
unforked, and immutable blockchain platform.

Our most sincere gratitude goes to those developers within and outside the Foundation who opposed inter-
fering with the Ethereum blockchain ledger and enabled the Ethereum Classic chain to survive and live on.
We know there are many of you and we welcome you at anytime to join our decentralized community.

We will continue the vision of decentralized governance for the Ethereum Classic blockchain and maintain
our opposition to any centralized leadership takeover, especially by the Ethereum Foundation as well as the
developers who have repeatedly stated that they would no longer develop the Ethereum Classic chain.

We likewise will openly resist the “tyranny of the majority,” and will not allow the values of the system to
be compromised. As a united community, we will continue to organize for the defense and advancement, as
required, for the continuation and assurance of this grand experiment. The Ethereum Classic platform, its
code and technology, are now open to the world as Open Source software. [9] It is now freely available for
all who wish to improve and build upon it: a truly free and trustless world computer that we together as a
community have proven and will continue to prove is anti-fragile. [10]

• The Ethereum Classic Community

16 Glossary

51% attack attacks against blockchain systems that are possible if attackers control over half of the mining
resources

account data structure associated with Ethereum Classic users and smart contracts

address unique numbers that identify blockchain accounts and are derived from the associated private keys

ASIC application specific integrated circuit, devices optimized for specific tasks such as blockchain mining

block sets of blockchain transactions and related logistical information

block explorer website presenting information about a blockchain

block header all the fields of Ethereum Classic blocks except the transaction and uncle header lists

block propagation distribution of copies of blocks throughout blockchain networks

blockchain linear arrays of blocks each of which met the requirements of the blockchain system

bootstrap nodes Ethereum Classic network computers that are always available and accepting of new
connections from other network computers

classic ether the native cryptocurrency of Ethereum Classic, also referred to as ether

coinbase blockchain account that receives mining rewards

compiler programs that translate programs from one programming language to others

consensus agreements among blockchain miners regarding the selection of the official chain

cryptocurrency money systems implemented on blockchain systems

40

https://github.com/ethereumproject
https://en.wikipedia.org/wiki/Antifragile


daemon autonomous software agents

DAG directed acyclic graph, used in the Ethereum Classic proof of work calculations

dapp applications that run on blockchain systems, also referred to as decentralized applications

decentralization the elimination of centralized control entities from software and network designs

decentralized application applications that run on blockchain systems, also referred to as dapps

decentralized autonomous enterprise sophisticated smart contracts that perform many of the functions
of organizations

difficulty difficulty of a proof of work calculation in a blockchain system

digital signature strings associated with other strings that prove the creators has access to a private key

digital signature authentication mechanism in which text snippets appended to data establishing that the
creator had access to the associated private key and did a calculation on the data with it,

elliptic curve cryptography type of cryptography typically used in blockchain public and private key
systems

encryption a cryptographic process used to protect the privacy of information

ether the native cryptocurrency of Ethereum Classic, also referred to as classic ether

event requests in smart contracts to log some information

EVM Ethereum Virtual Machine

exchange place to buy and sell cryptocurrencies

external account one of the two types of Ethereum Classic accounts, used by external clients

fast syncing updating blockchain copies and downloading instead of calculating state information

gas units used to measure resource usage in the Ethereum Classic system

gas limit limits on the maximum possible of gas units, blocks for example have limit on the amount of gas
all their transactions can require

gas price prices of gas units in classic ether

genesis block first blocks of blockchains

GHOST Greedy Heaviest Observed Subtree blockchain protocol

hash fixed length string calculated from another possibly much longer string with many uses such as con-
firming data integrity and naming objects

hashrate total mining capacity of a blockchain as measured by how fast hashes can be calculated

hexadecimal compact method of representing numbers involving numbers and letters, is especially used
for big numbers

IPC interprocess communication, used to communicate between processes on a computer

keyfile file containing a private and public key pair, typically encrypted

light client blockchain client that submit that can utilize a blockchain but does not maintain a complete
copy of the blochchain

Merkle Patricia trie data structures which represents key value pairs

message smart contract account requests to other smart contract accounts, may transfer funds as well as
invoke or create smart contracts

mining process of creating, verifying and distributing blocks in a blockchain

41



mining pool group of miners working together

mining reward new cryptocurrency tokens given to miners for performing mining

node computers in a network such as a blockchain network

node discovery process of finding other nodes in a network such as blockchain network

nonce numbers used once (Number ONCE) for various purposes in blockchain systems such as proof of
work calculations and preventing replay attacks

peer to peer network decentralized network without a centralized control entity

private key secret numbers of blockchain accounts used to authorize transactions from it

proof of work results of difficult calculations in some blockchain systems used to increase security

protocol set of rules to accomplish something like a process in a blockchain system

public key pairs of numbers derived from the private keys of blockchain accounts used to identify blockchain
accounts and determine account addresses

receipt transaction logs

RPC remote procedure call, used to invoke code on the same or different computers

serialization process of converting a data structure into a linear array of bits

Serpent high level smart contract language which is similar to Python

sharding mechanism to increase the scalability of blockchain systems by dividing blockchains into subsets
(shards) managed by different parts of the network

sidechain blockchain that is associated with but still separate from another blockchain

smart contract autonomous software agents such as software running on blockchains

Solidity high level smart contract language which is similar to Javascript

state in Ethereum Classic, all account information for all accounts at some point in time

syncing updating blockchain copies

transaction external account requests to the Ethereum Classic system, may transfer funds as well as invoke
or create smart contracts

transaction fee gas costs to execute transactions

trustless property of public blockchain system whereby no entity has special permissions

uncle losing blocks in mining contests that are used to increase the security of blockchain systems

virtual machine computing resource implemented in software

Vyper high level smart contract language which is similar to Python

wallet set of public and private keys, may also refer to other associated information and software

web 3 name that refers to the vision of a more secure, trustless blockchain based World Wide Web replace-
ment

42


	I Introduction
	II World Computer (Virtual Machine)
	Accounts
	Addresses
	Ether & Gas

	Smart Contracts
	Smart Contract Languages
	Multisig Smart Contracts

	Clients
	Web 3


	III World Database (Blockchain)
	Transactions
	Blocks
	Computation
	Consensus
	Context
	Accounts

	Logs
	Logging Requests

	Mining
	Proof Of Work Information
	Ethash
	Uncle Blocks
	Mining Pools
	Mining Rewards


	IV Appendices
	Recursive Length Prefix
	Root Hashes
	Bloom Filters
	Digital Signatures
	How Nodes Find Each Other
	Code Is Law Principle
	A Crypto-Decentralist Manifesto By Bit Novosti
	The Ethereum Classic Declaration Of Independence
	Glossary


